
PHYSICAL REVIEW E 66, 046706 ~2002!
Structure of best possible strategies for finding ground states
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Finding the ground state of a system with a complex energy landscape is important for many physical
problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are
usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected
examples. We present a proof that for a wide range of objective functions threshold accepting is the best
possible strategy within a large class of algorithms that simulate random walks on the landscape. In particular,
it can perform better than simulated annealing, Tsallis and Glauber statistics.
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I. INTRODUCTION

The problem of finding the ground state of a compl
system arises in many areas of modern science. Rel
problems of global optimization are important for engine
ing design and for everyday implementations of countl
business decisions. In the realm of physics, such probl
occur in the study of complex systems, such as spin gla
@1#, neural networks@2#, and protein folding@3#. The devel-
opment of algorithms for the solution of such complex op
mization problems began with local search heuristics ba
on physical analogies, notably simulated annealing@4,5#.
Given the large, and continually growing number of varia
of this algorithm, its importance to the body of knowledge
physics is permanently increasing. The present paper, w
not really providing a constructive improvement for solvin
these problems, proves a surprising theorem regarding
structure of the optimal way one should search for su
ground states.

The theorem we prove concerns algorithms of the rand
walk type, i.e., where randomly generated states are con
ered by an acceptance rule for possible adoption as the
state of the walk. Our theorem asserts that for algorithm
this type that make their decisions solely based on the va
of the objective functions, threshold accepting is the optim
acceptance strategy. Given the number of variants of
type of acceptance rule in the literature@6–10#, the impor-
tance of the present type of structure theorem concern
optimal strategies within classes of local search heuristic
evident.

The present paper extends the preliminary result al
these lines which appeared as a letter@11#. The development
in that letter is extended in two ways: We weaken the
sumptions required on the type of algorithm and we grea
extend the class of objectives to which the theorem app
The present version of the theorem covers essentially all
jectives that are standardly used to measure the efficacy
search algorithm.
1063-651X/2002/66~4!/046706~7!/$20.00 66 0467
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II. A CLASS OF OPTIMIZATION ALGORITHMS

We consider systems specified by a finite set of stateV
5$a%, uVu5L, an objective~energy! function assigning a
number E(a) to each state and a neighborhood relati
N(a)#V which specifies the set of states one move aw
from a. The class of algorithms discussed here utilizes r
dom walks on the state space of the system: Being in a
tain statea, the random walker chooses a new stateb from
its set of neighborsN(a) with a probabilityPba and accepts
the new state as the next state in the random walk wit
certain acceptance probabilityPba

T . The acceptance prob
ability depends on a parameterT, which in simulated anneal
ing is called the temperature in analogy to the physical p
cess. ForT5` all moves are accepted. For any fixedT, most
known algorithms share the following three properties:

~A1! The acceptance probabilityPba
T depends only on the

energy differenceDE5E(b)2E(a) , i.e., Pba
T 5PT(DE).

~A2! For energy differencesDE<0, the functions
PT(DE)51, i.e., downward moves in energy are always a
cepted.

~A3! For energy differencesDE.0, the functionPT(DE)
is monotone decreasing, i.e., it is more likely to accept sm
steps upwards in energy than large steps.
It turns out that property~A2! is not needed, if property~A3!
is extended to nonpositive energy differences.

~A38! For all energy differencesDE, the function
PT(DE) is monotone decreasing.
We here extend the arguments of Ref.@11# to algorithms
sharing only properties~A1! and ~A38!.

III. EXAMPLES OF ALGORITHMS IN THE CLASS

The premier example of algorithms in the class cons
ered is the original simulated annealing algorithm, intr
duced by Kirkpatricket al. @4# and Černy @5#, in which the
acceptance probability is based on the Metropolis algorith
©2002 The American Physical Society06-1
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For fixed T, this algorithm has a Boltzmann distribution o
V for its stationary distribution. Its acceptance probability

PMe
T ~DE!5H 1 if DE<0

e2
DE
T if DE.0,

~1!

where for convenienceT is measured in terms of energy, i.e
kB51.

In the implementation of the algorithm the computation
the acceptance probability needs the evaluation of an e
nential function for each step of the random walker. Due
and Scheuer@6# and Moscato and Fontanari@7# changed the
Metropolis acceptance probability when stepping upward
rty
ob

l-

e

n
s
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energy from an exponential to a step function, i.e.,

PTA
T ~DE!5H 1 if DE<T

0 if DE.T.
~2!

This early modification was introduced as a ‘‘poor man’
simulated annealing to make the algorithm faster by rem
ing the necessity to compute values of the exponential fu
tion. Surprisingly, it seems to yield the same if not bet
solutions than the Metropolis algorithm when used as
optimization algorithm. The algorithm with acceptance pro
abilities ~2! is called threshold accepting.

Another related technique was introduced in the cont
of generalized thermodynamics@12#. Penna@8# and Tsallis
and Stariolo@9# introduced an acceptance probability of th
form
sallis
Pq
T~DE!55

1 if DE<0

S 12~12q!
DE

T D 1/(12q)

if DE.0 and ~12q!
DE

T
<1

0 if DE.0 and ~12q!
DE

T
.1,

~3!

depending on an additional parameterqÞ1. We refer to the random walk with these acceptance probabilities as the T
algorithm below. Forq51, Eq. ~3! is not defined, but one can show that in the limitq→1 the acceptance probability~3!
converges to the Metropolis probability~1!.

Franz and Hoffmann@10# modified the Tsallis acceptance probabilities for parametersq,2 to

P̃q
T~DE!55

1 if DE<0

S 12
12q

22q

DE

T D 1/(12q)

if DE.0 and
12q

22q

DE

T
<1

0 if DE.0 and
12q

22q

DE

T
.1.

~4!
as
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For fixed q, this is equivalent to Eq.~3! with the rescaled
temperature parameterT85T(22q). The advantage of this
modified transition probability is twofold. First for everyq
,2 the new acceptance probability~4! has, analogously to
Metropolis and threshold accepting, the prope
*0

`P̃q
T(x)dx5T and secondly the threshold acceptance pr

ability can then be interpreted as a limiting caseq→2` of
Eq. ~4!. Note that in the limitq→1 the acceptance probabi
ity ~4! still converges to the Metropolis probability~1!.

Another example of a known acceptance rule is provid
by Glauber dynamics@13# which uses

PGl
T ~DE!5

1

11eDE/T
. ~5!

This acceptance rule has been used in global optimizatio
Szu and Hartley@14# as part of the implementation known a
fast simulated annealing.
-

d

by

IV. OPTIMAL ALGORITHMS

The purpose of the random walk is to bring the walker
far down in the energy landscape as possible, controlling
random walk by choosing the probabilitiesPT(DE) at each
time steptP$1,2, . . . ,S% in the algorithm (S denoting the
duration of the random walk!. This amounts to choosing
cooling scheduleT(t) and thus a corresponding sequence
acceptance rulesPT(t), denoted byPt further on.

When comparing different algorithms a yardstick
needed, which somehow should quantify this desire to co
close to the global minimum of the energy function duri
the annealing. Accordingly, we are interested in choos
acceptance rulesPt which optimize some measure of how fa
down the random walker goes. We introduce the notationpa

t

for the probability that the random walk visits statea at time
tP$0,1,2, . . . ,S% (pa

0 denoting a given starting distributio
for all aPV). The most common objective functions used
measure the quality of an annealing run are:
6-2
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STRUCTURE OF BEST POSSIBLE STRATEGIES FOR . . . PHYSICAL REVIEW E 66, 046706 ~2002!
~O1! The final mean energŷE„a(S)…& should be as smal
as possible.

~O2! The final probabilitypGS
S of ending up in the ground

state should be as large as possible.
~O3! The expected number of visits to the ground st

should be as large as possible.
~O4! The probability of visiting the ground state durin

the annealing should be as large as possible.
~O5! The mean final Best So Far~BSF! energy@15,16#

should be as large as possible. The BSF energy of a g
sequence or patha(t) up to stepS is given as

EBSF~S!5min0<t<S$E„a~ t !…% ~6!

and describes the lowest energy found along that path.
While both objectives~O1! and ~O2! are linear functions

of the final state probabilitiespa
S , this is not the case for the

objectives~O3!–~O5!. In Ref. @11# we showed that for any
objective being a linear function ofpa

S ~thus including~O1!
and ~O2! as special cases! threshold accepting is the be
strategy to use. In the following we will prove that this a
plies for any objective which is a linear function of the sta
probabilitiespa

t during the whole process and not only at
5S. This extends the theorem to cover objective~O3!. Fur-
thermore, we show that this is true not only for the giv
random walk but also for a class of Markov chains which c
be constructed from the random walk and which enables
to include objectives~O4!–~O5! in the cases to which the
theorem applies.

V. A MATHEMATICAL DESCRIPTION
OF THE DYNAMICS

The time development of the probabilitypa
t that the ran-

dom walk is in a statea at time stept is described by the
master equation

pa
t 5 (

bPV
Gab

t pb
t21 , ~7!

with the transition probabilities

Gab
t 5Pab•PtE~a!2E~b! for aÞb ~8!

and

Gaa
t 512 (

bÞa
Gba

t . ~9!

The probabilitiesPab of choosing a neighboraPN(b) as
the candidate for a move fromb are a given stochastic ma
trix such thatPab50 if aP” N(b). We note that the entrie
of G are linear functions of the acceptance probabilitiesPt.

VI. THE PROBABILITY DISTRIBUTION
FOR THE BSF ENERGY

We now turn to the problem of obtaining the probabili
BS(E) to have seen an energyE or better up to timeS. This
probability can be obtained by considering a modified r
04670
e

en

n
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dom walk which turns states at or below energyE into ab-
sorbing states@17#. Specifically, we modify the transition
probabilitiesGab

t in the following fashion: We introduce a
modified transition probability matrixGab;E

t

Gab;E
t 5H d~a,b! if E~b!<E

Gab
t if E~b!.E.

~10!

Note that these modifications still keep the dependence
the acceptance probabilitiesPt linear in all of theGab;E

t .
As an example, consider the following transition probab

ity matrix,

Gab5S 0.1 0.1 0

0.9 0.8 0.1

0 0.1 0.9
D ~11!

between states 1, 2, 3 with energiesE1,E2,E3. Then
Gab;E1

will be

Gab;E1
5S 1 0.1 0

0 0.8 0.1

0 0.1 0.9
D , ~12!

andGab;E2
will be

Gab;E2
5S 1 0 0

0 1 0.1

0 0 0.9
D . ~13!

In this way each random walker reaching a state w
energy less or equal toE is trapped at that state. Evolving th
associated probability distributionpa;E

t

pa;E
t 5 (

bPV
Gab;E

t pb;E
t21 , ~14!

gives the probability to be in statea of the modified chain
after t steps. ForE(a).E this is the same as the probabilit
of being in statea in the unmodified random walk and no
having visited any states with an energy less than or equa
E before timet. The probability to have visited a state wit
energy less than or equal toE up to timeS in the unmodified
random walk is thus,

BS~E!5 (
a:E(a)<E

pa;E
S . ~15!

In order to determine the full distribution of the BSF e
ergy we use the finiteness of the state space: We sort
finite number of different energy values in ascending or
and label themEk , kP$1,2, . . . ,K%. Then for everyk the
correspondingBS(Ek) is determined and the probability tha
the lowest energy visitedEk is given by

bS~Ek!5BS~Ek!2BS~Ek21!, ~16!
6-3
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whereE0 is an arbitrary energy valueE0,E1. For such a
valueE0 we havepa;E0

t 5pa
t andGab;E0

t 5Gab
t .

Equation~16! yields the mean BSF energy^EBSF(S)& as

^EBSF~S!&5 (
k51

K

bS~Ek!Ek . ~17!

Summarizing the above, for eachk the master equation
with corresponding modified transition probabilitiesGab;Ek

t

needs to be iterated. This can be presented in a compact
by introducing a vector/matrix notation for the master eq
tion ~7!,

pt5G tpt, ~18!

where pt is the vector of probabilitiespa
t representing the

state of the random walk at timet and G t is the transition

matrix, consisting of the valuesGab
t . Similarly, Eq. ~14! is

expressed as

pEk

t 5GEk

t pEk

t . ~19!

Combining all the probability vectors pEk

t (k

P$0,1, . . . ,K%) into one vectorqt, we find

qt115S pE0

t11

pE1

t11

•••

pEK

t11

D 5S GE0

t
0 ••• 0

0 GE1

t
••• 0

••• ••• ••• •••

0 0 ••• GEK

t

D S pE0

t

pE1

t

•••

pEK

t

D
5Ḡ tqt. ~20!

Thus foraP$1, . . . ,L% andkP$0, . . . ,K%, we haveqLk1a
t

5pa;Ek

t . Hence the time development of the unmodifi

chain is contained inqi
t ,i 51, . . . ,L. The mean BSF energ

can be expressed as

^EBSF~S!&5 (
k51

K

Ek@BS~Ek!2BS~Ek21!#

5 (
k51

K

EkS (
a:E(a)<Ek

pa;Ek

S 2 (
a:E(a)<Ek21

pa;Ek21

S D
~21!

or

^EBSF~S!&5 (
k51

K

EkS (
a:E(a)<Ek

qLk1a
S

2 (
a:E(a)<Ek21

qL(k21)1a
S D . ~22!

Note that all our objective functions~O1!–~O5! are linear
functions of the probabilitiesqi

t , i P$1, . . . ,L(K11)%, t
P$1, . . . ,S%, a fact which is central to the arguments belo
04670
ay
-

.

VII. THE THEOREM

In a preceding paper@11# we proved that among accep
tance rules with properties~A1!–~A3!, the optimal strategy is
to use only threshold accepting rules. This optimality
threshold accepting was already seen earlier@18# while com-
paring different acceptance rules numerically using
modified Tsallis statistics~4!, which includes Metropolis and
threshold accepting as limiting cases@10#. Another partial
result in this direction@19# showed that an optimal annealin
schedule begins and ends with a number of threshold st

In the present paper, we extend the previous theorem
several ways. First, we do away with the assumption of pr
erty ~A2!. Second, we extend the class of objective functio
to which the theorem applies. The previous proof was c
fined to objective functions that are linear in the final sta
probabilitiespa

S . Here we extend this work by investigatin
also objectives~O1!–~O5!, and more generally, any objectiv
function which is a linear function ofqi

t .
Theorem. For any optimization algorithm satisfying prop

erties ~A1! and ~A38!, and any objective function which is
linear in the probabilitiesqi

t , i P$1, . . . ,L(K11)%, t
P$1, . . . ,S% of the extended random walk constructed
above, the optimal acceptance strategy is threshold acc
ing.

VIII. THE PROOF

The proof hinges on the fact that all of the entries in t
transition matrixḠ t are linear functions of the acceptanc
probabilities. We begin by introducing vector notation f
convenience. Just as we changed from denoting the vecto
probabilities pa

t as an L-dimensional vectorpt, and the
L(K11)-dimensional state vectors byqt, we associate a se
quence of vectorsFt of L(K11) elements to any linea
function of the state vectorsqt, t51, . . . ,S. Our theorem
concerns any objective function linear in theqt, i.e., mini-
mizing any function of the form

F~q1,q2, . . . ,qS!5(
t51

S

~Ft! tr
•qt5(

t51

S

(
i 51

L(K11)

Fi
tqi

t→min,

~23!

where (•) tr denotes transpose and the minimum is taken o
all possible sequences of acceptance rulesPt, t51, . . . ,S. A
sequence of acceptance rules is an optimal schedule fo
problem~23!, if for this sequence the minimum in Eq.~23! is
achieved. The vectorsFt may be any arbitraryL(K11)-
tuples of numbers. For instance, note the following:

~1! For maximizing the final ground state probabilitypGS
S ,

Fi
t50 unlesst5S and i 5GS in which caseFGS

S 521;
~2! when minimizing the mean final energy,

Fi
t50 for t,S;

Fi
S5E~ i ! for i<L;

Fi
S50 for i .L;
6-4
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FIG. 1. Dynamic programming problem with control given by the acceptance rulesPt. Every stept takes as input the state vectorqt21,
and transforms it into an outputqt according to the controlPt. The outputs determine the objective functionF(q1,q2, . . . ,qS) of the
dynamic programming problem.
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~3! when minimizing the mean BSF energy,

Fi
t50 for t,S;

FLk1a
S 50 for kP$0, . . . ,K21%,

aP$1, . . . ,L% and E~a!.Ek ;

FLk1a
S 5Ek2Ek11 for kP$0, . . . ,K21%,

aP$1, . . . ,L% and E~a!<Ek ;

FLK1a
S 5EK for aP$1, . . . ,L%.

Let M<L(L21) be the number of distinct values of th
energy differencesE(b)2E(a) between neighboring state
Then the acceptance rulePt can be considered as a
M-dimensional vector of numbers in@0,1#. For convenience
we assume that theM different DE values are sorted in in
creasing order and thus the monotonicity property~A38! as-
sures us that the entries in the vectorPt are nonincreasing
The possible range for thePt vectors is a simplex in the
M-dimensional space. Let us recall that a simplex in r
n-dimensional space is the smallest convex set containinn
11 points in general position, i.e., not all lying in a hype
plane. For example, forM53, i.e., for three different value
of DE, the set of allowedPt values is the tetrahedro
$1>Pt(DE1)>Pt(DE2)>Pt(DE3)>0%. The vertices of
this simplex are those vectors for which three of the fo
inequalities hold with equality. These are precisely the v
tors Pt containing an initial sequence of ones followed by
sequence of zeros. In general, let the set of vertices of
simplex in theM-dimensional space be denoted byV. The set
V is exactly the set of all possible threshold acceptance ru

The optimization task~23! for the dynamic process de
scribed by Eq.~20! is a discrete control problem, where th
controls are the acceptance vectorsPt. Such problems can b
04670
l

r
-

is

s.

solved by dynamic programming. The scheme of our d
namic programming problem is illustrated in Fig. 1.

In every stept, an inputqt21 is transformed into the out
put qt under the influence of the controlPt, which is the
acceptance rule at timet. Finally, the output for the stepsqt

is used to determine the optimality criterio
F(q1,q2, . . . ,qS). In this case the Bellman principle hold
@20#. This means that the optimal control can be compu
backwardst5S, S21, . . . ,1.

Let us first consider the last stepS. For any given input
qS21, we have to solve the optimization problem

(
t51

S

~Ft! tr
•qt5 (

t51

S21

~Ft! tr
•qt1~FS! tr

•qS5constant

1~FS! trḠSqS21→min, ~24!

where, as noted above, the matrix elementsḠ i j
S given in Eq.

~20! depend linearly on the control vectorPS. The possible
range forPS is the simplex described in the preceding se
tion. Hence we have to find the minimum of a linear functi
on a simplex. By the fundamental theorem of linear p
gramming@21#, this minimum is found at one of the vertice
in V, i.e., at a threshold acceptance function. Call this ver
vS. Of course this vertexvS depends on the inputqS21, i.e.,
vS5vS(qS21).

Now let us continue with the second to last stepS21. For
any given inputqS22, we have to solve

constant1~FS21! tr
•ḠS21qS221~FS! trḠS~vS!ḠS21qS22

→min, ~25!

where we now already know thatGS(vS) is a transition ma-
trix corresponding to a threshold acceptance function. Si
we do not know in advance the vectorqS21 which deter-
minesvS, we consideruVu different objective functions, one
for every vertex vSPV. For fixed vS the optimization
6-5



c
pt

m
o

he
on
in
o

n

g
o

n

th
he
y
el
tly
-
h
it

s
s.

p
en

r
e

or
a

ob
nc

ing
con-
ies
an-

nd

of
he
on

ial
ll,

be-

llis
this
ting

lish
s.
ved
ng
ral
gh
ed
e of
les

us-
sue
ins

ost
ion

ily
is

, it
c-

It is
for
this
he
v-

is
In

the
red
ed
r
tion
nt
he
al
: a
s or

HOFFMANN, FRANZ, AND SALAMON PHYSICAL REVIEW E66, 046706 ~2002!
problem~25! is again a linear problem with the same stru
ture as Eq.~24! over the same range, thus also here an o
mal control is found at one of the vertices inV, i.e., at a
threshold acceptance function. Call this vertexvS21. This
vertexvS21 depends on the inputqS22 and on the vertexvS,
i.e., vS215vS21(qS22,vS). Since the vertex setV is finite,
there is a vertexvS which gives the minimum over alluVu
possible minimum values in problem~25!. It follows that in
the last two steps threshold acceptance functions are opti

In a similar way, we process all the remaining steps
the dynamical optimization problem from the end to t
beginning. At each step, we find a linear optimizati
problem over the same simplex range that attains its m
mum at one of the vertices. Hence in every step a thresh
acceptance function is optimal. The finiteness ofV is crucial
here to guarantee that the number of possible vertices ofV is
finite.

IX. UNIQUENESS

The proof above establishes thatan optimal sequence
of acceptance rulesPt, t51, . . . ,S is of the threshold
accepting form, it does not assert thatall optimal sequences
of acceptance rules are of this form, i.e., by our argume
thus far, other strategies may do equally well~but not
better!!. In the following, we show that threshold acceptin
actually does better than other strategies except
trivial problems for which the acceptance rule makes
difference.

In terms of the linear programming problem at eacht, the
existence of other strategies that do equally well means
a face or edge of the simplex is degenerate, i.e., that t
exist energy changesDE for which an acceptance probabilit
of zero or one or anything in between does equally w
Conversely, if an optimal acceptance probability is stric
between 0 and 1 for someDE.0, then setting this probabil
ity equal to 0 or 1 would do equally well, i.e., for suc
values ofDE, the algorithm does as well whether or not
accepts such moves.

To see the full implications of this fact, consider the cla
of acceptance rules for which the following property hold

~A4! The acceptance probabilityPt(DE) is strictly be-
tween 0 and 1 for allDE with 0,DE,`.

Note that Metropolis, Tsallis as well as Glauber acce
tance rules belong to this class. It follows from our argum
above, that if an acceptance rule satisfying~A4! is optimal,
then so isany acceptance rule, since in that case for allDE
.0 the vertices always accepting that move and always
jecting that move must be degenerate. In the languag
Metropolis based annealing, this means that a quench~reject-
ing all moves withDE.0) and a random run~accepting all
moves! would both be optimal. This can only happen f
very special, rather trivial problems. In summary, if for
certain problem an acceptance rule satisfying~A4! is opti-
mal, then all acceptance rules do equally well for that pr
lem. Similar considerations apply to the other accepta
rules discussed above.
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X. CONCLUSIONS

In the present paper, we considered the problem of find
the ground state of a system whose energy landscape
tains many local minima. We examined search strateg
based on visiting states of the problem according to a r
dom walk. We formulated the general properties~A1!–~A3!
which characterize ‘‘reasonable’’ acceptance rules a
showed that among all search strategies obeying~A1! and
~A38!, optimal strategies always exist consisting entirely
threshold accepting. The proof holds not just for finding t
ground state, but for any objective that depends linearly
the state probabilities. Furthermore, except for highly triv
problems for which all acceptance rules do equally we
strategies that employ acceptance probabilities strictly
tween 0 and 1, such as those satisfying~A4!, cannot be
optimal. In particular, strategies based on Metropolis, Tsa
or Glauber acceptance rules cannot be optimal. While
does not exactly establish uniqueness of threshold accep
as the optimal strategy for all problems, it does estab
such uniqueness for all but a negligible class of problem

Knowledge that the best performance can be achie
using threshold accepting is of limited use without knowi
the optimal sequence of thresholds which will in gene
depend on the initial distribution. In particular, even thou
we have shown that Metropolis, Tsallis or Glauber bas
acceptance rules cannot achieve the optimum performanc
the algorithm, it may still be better to use acceptance ru
for which a good cooling schedule is known rather than
ing threshold accepting with a poor schedule. Thus, the is
of comparing schedules using different strategies rema
unsettled.

The freedom to use any linear objective includes m
but not all possible objectives of interest. The construct
used in the present paper significantly extended the fam
of objective functions that could be considered in th
class and to which the theorem applies. In particular
extended the theorem sufficiently to cover all of the obje
tives ~O1!–~O5!.

Our proof had to assume that the state space is finite.
our belief that a similar proof can be pushed through
larger state spaces but we postpone the exploration of
problem to a future effort. We remark, however, that t
realities of finite arithmetic on a digital computer forces e
ery state space to be finite.

Our result does not prove that threshold accepting
the best possible algorithm for finding ground states.
particular, there may be better algorithms outside
broad class of well-studied Monte Carlo methods conside
here. For the algorithms in this class, which are often term
local search heuristics@22#, proven results are rare. Ou
result establishes the structure of the optimal implementa
within this class of heuristics. As such, it is an importa
advance in global optimization, moving the subject from t
realm of empiricism toward the realm of provably optim
algorithms. The theorem proved is powerful and simple
move is either good or bad so one should accept it alway
never.
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